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Relation: weather
Nao. | outlook | temperature | humidity | windy | play
Mominal Numeric Mumeric | Mominal | Mominal
1 SUnNMy 85.0 85.0 FALSE  no
2 sunny 80.0 90.0 TRUE no
3 overcast 83.0 86.0 FALSE  vyes
4 rainy 70.0 96.0 FALSE  wes
5 rainy 68.0 80.0 FALSE  wes
B rainy 65.0 JO.0TRUE no
T overcast 64.0 B65.0 TRUE  ves
8 SUNMy 72.0 95.0 FALSE no
9 SUNNY 69.0 70.0 FALSE  wes
10 rainy 75.0 80.0 FALSE  vyes
11 sunny 75.0 FO.0TRUE  yes
12  overcast 72.0 90.0 TRUE  wes
13 owvercast 81.0 75.0 FALSE  wes
14 rainy 71.0 91.0 TRUE no
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IG (attributey) = entropy (current_node) - Z P (child_node) ; * entropy (child_node) ;

i=1

Y # % HO(! 2?2

. #0 9* B2
sunny rainy
overcast
yes yés yes
yes yes yes
no yes yes
no yes no
no no
9* B2/
7! 9 *

#)Y % H (I 0#'%

, #H M ITOFPG 'O3P OB PO3PM

)4 (GM'"FB GO:+BN "FI QB+BN Q :(+BN "FJPM

"FB G "EF3 MD348=)

1o #) # # 3 % 0 0*2

, . F D3D4E)
* -.FD3D8>)
" - FD3294)

) # 0 O H# %
1. ) 0 # 1

%



0 &+ &&+ >

! # " # ! % 6
! # % %

F'# % CHYH % # !'" 00
# 7?7 4 "5 b O* # O# O
% ' 0# O # # % '

V'# 4# . *# % *OH * # %

"\ # #1 % ! * 05" "0

0" % o0 ! * # . (*#..

r *

tree raisingandtree substitution.

Another common method for deciding on which attiébio split a node is calle@ini

Index(referred to as onlini from now on), whose formula for a given node Nhis
following:

Gini(N) = 1 — (P2 + P2 + P +...+ P9

where P ...P, are the relative frequencies of classe®M®, present at the node

Calculating the Gini at our root node, we have:

Gini (root) = 1 — (5/14+9/14%) =
1-(0.413 + 0.127 ) 8.459

, # #) ! #' % % 0 # to
#1 0*. 2
n
Gini (attributey) = Z P (child_node) ; * Gini (child_node)

i=1

1 0 *) L o# 2
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Relation: weather.symbolic
Mo. | outlook | temperature | humidity | windy | play

o Mominal Mominal Mominal | Mominal | Nominal
1 sunny hot high FALSE no
2 sunny  hot high TRUE no
3 overcast hot high FALSE  yes
4  rainy  mild high FALSE ves
5 rainy  cool normal  FALSE  yes
6 rainy cool normal TRUE no
7 overcast cool normal  TRUE  yes
8  sunny  mild high FALSE no
9 sunny cool normal  FALSE  yes
10 rainy  mild normal  FALSE  yes
11 sunny mild normal  TRUE  yes
12 overcast mild high TRUE  yes
13 overcast hot normal  FALSE  yes
14 rainy  mild high TRUE no

Figure 5— Weather data (nominal version, taken from WEKA)



0 &+ &&+

Gini (humidity) =J+BN) 4#*#5QJ+BN) 4 .5
M J+ B N O 143+334B+J® Q J+ B N O 14E+Q51 +J5P
M "BB>FJFEQ " BB>F>

F D35:=

* - F >+BN) 4! 5QE+BN) 4 5
M >+ B N O 14E+864 +>5P Q E+ B N O 143«E83+EP
M"B>RQ " B>:
F D384>

: .F B+BN) 4 5QB+BN) 44 5QE+BN) 4. 5
M B+B N O 143+B54 +B5P Q B+B N O 14 +B54 +B5P Q E+ B N O 14B<E5
4 +E5P
M"JRQ "B>RQ "FBR
F D388D5

0 .= #) 0 0O # # %
to split the root node. As we can see, Informati&ain and Gini lead to
different choices of attributes. This is due to thet that both measurements have
their specificities: IG is biased towards attritsuteith a large number of values and

Gini prefers splits that lead to maximizing theganece of a single class after the split.
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The LADTree scheme (Logitboost Alternating Decisidree) builds alternating
decision trees that are optimized for a two-clagblem (the classification problem
we deal with in this thesis is a 6-class problemj ¢hat make use of boosting. At

each boosting iteration, both split nodes and ptednodes are added to the tree.

& "&'( ) )

NBTree is a hybrid classifier: its structure istthfa decision tree as we have seen so
far but its leaves are Naive Bayesian classifidngchvtake into consideration how
probable each feature value (in the training sajnplegiven a certain class. In each
leaf, the class assigned to a sample is the onarthgimizes the probability of the
feature values found in this sample. In order toidkewhether a certain node should

be split or turned into a NB classifier, cross-gation is used.

This algorithm constructs a forest of random treRandom trees are built by
considering at each node a K number of random rfeat{out of F features available)
for splitting that node on. This is done for eadd& and no pruning is performed.
The random forest algorithm is a collection of ramdtrees and the class it assigns to
a sample item is the mode of the classes assignétht item by the random trees in

the collection.
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Classifier output

Logistic model tree

: LM 1:35/35 (683)
Humber of Leaves : 1

Size of the Tree : 1

LM 1:

Class 0 :

=31.13 +

[date=october] * 1.44 +

[plant-stand] * -1.34 +
[area-damaged=scattered] * 1.67 +
[leafspot-size=dna] * 1.75 +
[stem=cankers=above-sec=nde] * 3 +
[canker=lesion=dna)] * 1.45 +
[fruiting=bodies] * 7.45 +
[external=decay=firm-and=-dry] * 3.12 +
[fruit=pods=norm] * 4.41 +
[fruit=spots=dna] * 26.73

Class 1 :
=33.24 +
[int=discolor=black] * 69.21

Class 2 :

=22.61 +

[temp=lt=norm] * 16.96 +
[crop=hist=diff=lst=year] * 2.76 +
[germination=90=100] * =1.58 +
[leaves] * =T7.24 +
[stem-cankers=below-s0ll] * 12.95 +
[canker-lesion=brown] * 9.97 +
[external-decay=firm-and-dry] * 7.87
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LMT, however, the accuracy reaches its maximumiscrtization is done after
attribute selection. Quite surprisingly, in the easf Naive Bayes, doing only
discretization on the data gives us better reshiéts first doing attribute selection and
then performing discretization. For all 3 classgi@bove, discretization on its own

shows more improvement on accuracy than perfor@itigpute selection alone.

We can conclude from the experiments in this saecti@t there is no a-priori best
way to pre-process the data. We need to take differlassifiers and their respective
accuracies into consideration, along with what @msk at hand is. If our task is a
simple classification one, in which all that madtes classification accuracy, this is
what should guide us. However, we should be awarnhe fact that discretization

leads somehow to loss of more fine-grained inforomat

We now turn from focusing on accuracy to focusingtloe individual contribution of
each of the features in our subset to the prediatibproficiency level and to the

system as a whole.

We are interested in knowing what the individuahtcution of each of our 8
features is to the whole system. Therefore, we lexperimented with running LMT
in a 10-cross-fold experiment using different coiodis. We remind the reader that
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our best result so far with LMT was based on thpesuset experiment (mean
accuracy of 10 runs). Here we use only 1 run otrt®s-fold iteration, in which
accuracy is 64.65% when all 8 features are usedeMer, the result can be said to be
less reliable than in the super_set design. Thieidwhl contribution of each feature
can be seen below in Talde

Feature Accuracy only | Accuracy using all
using this feature | other features (7)
but this one
TYPES 39.29% 56.34%
AUT+ 41.37% 64.44%
AUTTOT 44.69% 62.37%
CLAEMPTY 37.21% 62.78%
PRES 42.61% 56.75%
FORM 28.48% 62.37%
ERRLEX 34.51% 61.12%
ERRTOT 36.38% 62.16%

Table5: Individual contribution of each feature in the sab

As we can see in the table above, the feature AUIT{®sum of both correct and

incorrect “native-sounding” structures/constructiprseems to be the feature that
correlates the highest with proficiency level whesed alone. However, when

removed from the subset of 8 features, it doeshawte as significant an impact on

accuracy as the feature TYPES does. We can seefdtes that our 8 features work

as a system and that no feature can be said toeb®dst important of all. Removing

any of our 8 features leads to a decrease in aogufdus, our best option is to use
all of them.

In the next section we discuss the misclassificaéioors that C4.5, LMT and Naive
Bayes have made on our data. We show which errersnare typical (involving

which levels) and explore possible reasons for. that
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In this section, we look at what the most typicasctassification error types are for

each of the 3 classifiers above (C4.5, LMT and H&ayes). We use the best version
of each of these 3 classifiers, namely, the onainbét after performing attribute

selection and discretizing the numeric values. Thea submit our corpus to 1

iteration of ten-fold cross validation in order éamalyze the results. Many of the
individual essays are misclassified by all thre@wrf classifiersWe discuss these in

the next section.

For the moment, we can visualize in Table 6 belo&# most frequent classification
errors by each classifier, along with how many gsseere misclassified in that way
and how many essays were misclassified in totaé ibtation 2 = > 3 should be
understood as “level 2 gets classified as leveNstice that the number of different
number of

misclassifications in the table does not add up the total

misclassifications, since we only include here Themost common misclassification

types.
Classifie | Missclas| Missclas| Missclas| Missclas| Missclas| Missclas| Missclas
r .1 .2 .3 .4 .9 . 6 s
2=>3 | 2=>1| 4=>3 | 3=>4 | 3=>2 | 1=>2 | 4=>5
C4.5 | (30/207)| (29/207)| (24/207)| (23/207)| (21/207)| (17/207)| (17/207)
3=>2 | 3=>4 | 2=>3 | 2=>1| 1=>2 | 4=>3 | 4=>5
LMT | (24/176)| (20/176)| (20/176)| (20/176)| (19/176)| (18/176)| (14/176)
Naive | 3=>4 | 1=>2 | 2=>1| 3=>2 | 4=>5| 2=>3 | 4=>3
Bayes | (23/189)| (23/189)| (22/189)| (22/189)| (18/189)| (16/189)| (15/189)

Table 6 -Most common misclassification types per classifier

From the table above we can clearly notice thahéncase of all 3 classifiers, the 7
most common classification errors have to do wifaeent classifications, which is

exactly what we want for a task such as ours, ngnaskigning different proficiency
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levels to different students based on their esslhygich a classification system is
used in a high-stake scenario, that is, one inhvttie consequences of the scoring are
quite substantial (such as the assessment perfoomné&drater in the TOEFL exam,
which can define whether a person will be accepted university of not), an
adjacent classification might not be enoudfor such situations, nothing short of an
extremely accurate classification might be accdptaHowever, in other possible
scenarios, such as an English placement test watliamguage center or school, the
consequences of an adjacent classification woulbaily not have such a big impact
either on the general system or, psychologicallythe students. Since the classifiers
we look at are either accurate or assign adjaeseid in the great majority of cases,
it would be simple to move a student a level uglown in the event that some in-
classroom discrepancy is noticed. A system sucthias despite not being perfect,
would have quite a few advantages, such as malgattgrbuse of important resources
such as teachers’ time, not being biased in itssdiaation (increased reliability) and
allowing a much bigger number of essays to be aedlynd placements to be done.
Other possible uses would be for self-assessmeranironline platform and for
providing feedback to the student in relation tosth features the system takes into
account. All this would only be possible, howevence a computational way of
extracting these 8 or so features from any essayabtually been implemented and
the values can be automatically fed to the clagsiWe will discuss this later.

The most common type of misclassification when a@klat all 3 classifiers above
are:2 => 1 (71 essays)3 => 2 (67 essays)3 => 4 (66 essays) and => 3 (66
essays). These numbers seem to indicate that |8vaelsd 3 are the ones that are
“tricking” the system the most, so to speak. Eveough this might be the case, we
cannot affirm this just yet, the reason for thaingequite simple. Our levels are not

uniformly distributed in the data, as figure 11pfeduced here as Figure 15) shows.

E #0 # # 97 ?. 1 & 0# #.
o# # .*# . ( & ! "% ! 00
% 0 & ! . O# #. *# "
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Figure 15— Class distribution in the corpus

Therefore, we must not use absolute numbers, lstiead relative numbers, which
take class distribution into account. For this, dwede the number of misclassified
essays for each level (sum of all 3 classifierg) diwide by the number of essays for
that level (multiplied by 3, since we are usingassifiers). We can see in Table 7 our

updated figures:

Level Relative Misclassification

29/ (19 x 3) = 0.508

777 (131 x 3) = 0.195

151/ (100 x 3) = 0.503

159/ (111 x 3) = 0.4774

110 /(65 x 3) = 0.564

gl b~ W N| | O

46/ (55 x 3) = 0.278

Table 7:Relative misclassification for C4.5, LMT and NaBag/es together

Our classification errors cannot be said to be ahlg to the fact that we have a
somewhat skewed distribution in our data (somesekasare more represented than
others). This might apply to levels 0 and 4 somehawt we see that levels 2 and 3,
which have the highest representativeness in the aldo get misclassified quite
often. Therefore, we cannot say with confidence the root of the misclassification

is lack of enough training data (we will also séead that eliminating level O from
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the corpus does not improve the accuracy signifiganin other words, the reason for
misclassification must lie somewhere else and wWetwito come up with reasonable

hypotheses shortly.

It would be very fortunate if the probability (ctacation confidence) assigned by
the classifiers to all misclassified essays wersmibto be below a certain threshold
and all correctly classified essays above it. i thwere the case, we could simply
decide not to classify any essays whose probabiias below the threshold,

preferring instead to trust a human rater with ghering of those essays. However,
this is not the case. Quite often, the classifassign misclassified essays a higher

classification confidence probability than theytdaorrectly classified essays.

9* ,

Given that some of the essays in our corpus haverfthan 25 tokens (which might
be too few in order for an automatic system thatislevith raw and relative numbers
to infer good patterns from data), we decided tpeexnent with removing these
essays from our corpus. The 33 essays that wecarded belong either to level 0O
(N=10), level 1 (N=14) or level 2 (N=9). We havenrthe updated essay collection
(448 essays now, instead of 481) again throughbest classifier, namely LTM.
When no attribute selection or discretization ifqgrened, we manage to increase our
accuracy from 58.09% to 59.47% (the super-set seheas used), which shows that
removing those essays might have a positive effie¢he system. One of the possible
reasons for thigmore will be explored later on in the broader dgsson of automated
essay scoring systemis)that when the system is dealing with raw nuraletich is
the case with the TYPES feature), having essays satfew words belonging to a
range of 3 different levels (0-2) might confuse #ystem, since it makes it difficult
for the system to find a numerical pattern in tlaadwith regard to this attribute.
Surprisingly, if discretization and attribute selec are performed, the effect of
removing the essays with fewer than 25 words isiaigt negative, with precision
going down from 62.58% to 61.44%.

We would expect that removing from the corpus kb essays that contain fewer
than 25 tokens and also those essays belongiregdéb0 (10 out of the 33 essays with
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fewer than 25 tokens belong to level 0, a strongetation) would have a negative
effect for the accuracy of LMT, since most of the levetskays have fewer than 25
words and the system might use this informatioroetingly (after all, the TYPES
feature is in our selected feature subset). Whenishdone, the accuracy actually
increases from 58.09% to 60.00%. When discretimaind attribute selection are
applied to the data without the essays with fewsan25 words and with no level 0
essays (TYPES remains in the group of most releymatlictor variables), the
accuracy of LMT also decreases on the updated sprgaing from 62.58% to
61.44%. It seems that the advantages of removiegetlessays from the corpus are
lost when discretization and attribute selection performed. We can conclude that
when the attribute TYPES (which tends not to bey\different from TOKENS in
quite short essays, such as ours) is part of a mudller set of attributes used in
classification, any kind of information availablerfLMT with regard to feature

values is important (specially in the absence stmitization and attribute selection).

Logistic Model Trees are so complex and advancedheir calculation of best
predictors for each class and their correspondogfficients that we might better be
guided by a pure accuracy approach when usingctassifier. If a certain decision
would otherwise make sense (from a testing pers@edbr example, it would make
sense to exclude essays with fewer than 25 wondsjidees not increase the system’s
accuracy (naturally the number of adjacent classitbns must be taken into account
as well), we should simply not take this specifecidion. In the next sections, we
discuss the optimal parameters for the classifiestnsuitable for our essay scoring
task: LMT.

7 , ") ! D H YA
&'( ) #

In this section, we look more closely at a sub$é¢h® essays that got misclassified by

all 3 classifiers in the test set-up describecertion 4.5 above.

As we will shortly discuss, if we look at LMT’s adjent agreement with human
raters, we manage to reach 96% accuracy, whichiis gigh. On the other hand, an

adjacent classification is still a classificatiamoe, if we take the human rater’s score
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to be the definite and correct one. There are cuitew factors that might prevent
LMT, C4.5 and Naive Bayes from correctly classifyi subset of the essays. These

are discussed below.

a) Some essays are simply too short

As we have seen in section 4.5.1 above, removiam fthe corpus those essays
containing fewer than 25 words leads to an increeseaccuracy (when no
discretization or attribute selection is performélh)e human raters have scored some
of those essays as either 0,1 or 2 and for a humam a little amount of input is
enough to judge’s someone’s language proficienapnKtof how easy it is to spot a
non-native speaker or how some specific errors lsitgnnot have been produced by
a proficient speaker). For our classifiers, howewehich are dealing with either
absolute or relative numbers, having too few cofmtsome features might actually
bias the classifiers towards levels in which thésature values are more typical.
Human beings are much more difficult to trick imstaspect.

b) The features used are not exhaustive

Even though our 3 classifiers make use of 81 featymany more than the great
majority of AES systems do) in the first runs ofrdasts and 8 features in their
updated (optimized) version, there are still somguistic phenomena which are
easily perceived and taken into account by humgersabut which are not recorded
in any of the features we use. Let us take onbegssays in our corpus:

This essay was holistically (taking overall qualityo account) scored a level 4 by the

human raters and a level 3 by all three classifi€hss essay makes use of some
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constructions/structures that show a more refinenoand of the grammar of the
language, such as stranding of prepositions (dsitot of nice people to do nice
thingswith”) and the use ofthere camesome small children[...]”. Even though these
are constructions that certainly draw the attentbra human rater (since they are
more advanced chunks), they only count as anottierik” in our features and are
added to our “AUT+” feature value. There is no idision between the types of
chunks in the AUT+ feature, despite the fact tlwaes chunks are much more typical
of advanced students and show a much more fineggatontrol of the structure of
the language (such as the ones just mentionedyefne, including some other
features that capture this kind of language usehimhglp towards improving
classification accuracy, since these uses are machk typical of proficient than non-
proficient language learners.

c) A fundamental difference in the human ratersd ame classifiers’ scoring

procedure

This might be the factor that has the greatest ainpa accuracy. The humans raters
who scored all 481 essays in our corpus have giveat prominence to what can be
called “native-sounding” elements in the essays e consequently scored higher
those essays that contained more of these elenidmts.means, however, that for
many raters, punctuation and mechanical errors,ek@ample, did not have much
effect on their judgment of the essay’s final s¢aiece they do not influence how the
essay “sounds”. Some of these “native-soundinglicsires are captured by our
AUT+ feature, which deals with chunks and collogasi. Others, such as the ones
mentioned inb above and the ones in bold below (taken from arotissay) are not

captured in any special way by any of our features:

Hi, my name is Lucca. I'mfaeshmanat Trevianum. It's way cool here. [...] |
like doing extreme sports such as: Snowboardingfing, Le parkour and

riding my dirtbike.Yes, you heard imy dirtbike!

The essay above was scored a level 5 by the hunaaerg but a level 2 (C4.5) or
level 3 (LMT and Naive Bayes) by the classifierbieTtwo structures above show

knowledge of more refined-vocabulary and of morsuediday-to-day language.
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While human raters pick up on these quite effostieshis is not fully represented in
any of our features (one might say that R5pc, fwangle, would capture less
common words, but it does not make a distinctiomvben them, capturing that some
are more “technical” or “casual-sounding” than of)leAlong the same lines, “you
heart it” is simply counted as one more collocdtbonk, despite its quite natural-
sounding characteristic. These specific charatiesi®f words are, however, taken

into account by human-raters.

d) Language itself is a quite complex phenomenon

Language is a very intricate system, in which &é tcomponents (grammar,
vocabulary, pronunciation, type of constructiorenantics, etc) interact and develop
in often unpredictable ways, as Dynamic Systemsihshows (Verspoor, de Bot &
Lowie, 2004)). Not all students in the same hdligiroficiency level show similar
feature values for all features. Some use corrpetlisg, but very simple words.
Others, at the same level, may use more complexisvtbrat are often misspelled.
Some may use correct sentence structure; others erpgriment with a more
complex sentence pattern and make an error. Asp@ersand Xu show (submitted),
there is enormous variation among the learnersectspy at the lower levels.
However, some of the features, especially aggrdgates, tend to grow (or decrease)
linearly across the proficiency levels. Anothermids that all subsystems (lexicon,
constructions) develop somewhat exponentially (eaobsystem becomes more
complex) and as the learner becomes more advatimsd, are more subsystems that
need to develop, making the increments of changeaah of these subsystems
smaller. The feature subset used in our classi{@réeatures) are all of the more
linear type, which explains why using only thosefetures actually improves
accuracy, in contrast to using all 81 features. e\mwv, there might be other
aggregated features that could improve the systethelr, but are not part of our
original feature set, such as bigram or trigranbphilities based on a native corpus,
which might capture many of the “native-soundingyustures and uses. Regardless
of how advanced a computational system might lgyuage is still the quintessential
area of inquiry where human observers have a delantage over automatic

systems.
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e) A somewhat skewed sample

Many essays in level 0 get misclassified by all&ssifiers, which might imply that
the “calibration” of typical feature values for sHeevel is far from optimal. Given that
only 19 out of the 481 essays used for trainingtglto level 0, we strongly believe
that including more essays that belong to levehQraining would improve the
accuracy of the classifiers.

In the automated essay scoring literature, meares@e often used in order to assess
whether the system is on average more strict (§y&s3 essays as a lower level than
they actually are) or more lenient, that is, ckyssy essays as a higher level than
actual (Wang & Brown, 2007)deally, a system should be neither, but should match
the actual classification. However, the implicasasf either scenario might be worth
taking into consideration depending on the use ttisystem will be put to. It is to
the mean scores assigned by LMT that we now turratention.
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In this section, we explore the mean score assidgnedMT both for the whole

scoring task (all levels included) and also onvelléasis.

The actual mean score of the whole system is diwyeahe following formula:

Actual mean(0*19) + (1¥131) + (2*100) + (3*111) + (4*65) +5(55) / 481 =2.49

(please refer to Table 8)

The actual mean for each of the levels is simpdy dlotual score at each level. In
Table 8 below we can find the actual mean scoresth@ mean scores calculated

from LMT’s classification:
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Level Actual Mean Score LMT’s mean score
General (all levels) 2.492 2.494

0 0 0.26

1 1.0 1.15

2 2.0 2.02

3 3.0 3.0

4 4.0 3.87

5 5.0 4.67

Table 8 -Actual mean scores and LMT’s mean scores

The general mean score assigned by LMT is almesttichl to that assigned by the
human raters, which means that when taking alllseirgo consideration, LMT is

neither lenient nor strict, performing instead ltke human raters. If we look at levels
4 and 5 however, there is a slightly higher disarely in the mean scores. As
Verspoor and Xu (submitted) found, the more advdrstadents become, the smaller
the differences between adjacent levels. Many ef ldvel 4 essays are actually
classified as 3 and many of the level 5 essays ¥¢edcan also conclude by looking
at LMT’s mean scores that there is a slight prefeeefor a lower adjacent level than
a higher one when it comes to adjacent classifinati(which take up the great

majority of classification errors). This can bers@eTable 5 above.
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After all the different experiments we have conédadn our work, we can clearly say
that LMT is the most fitting classifier (out of theleven classifiers we have
experimented with) for our automated essay scarsg. In every single run of the
super-set scheme (the most reliable one, givenittiperforms many more runs and
data shuffling than the other schemes used), LMAieaed the best results (see
Tables 1, 2 and 4). We can also conclude that ptienal way in which LMT can be

used is when we first perform attribute selectioltofved by discretization during the

training phase, leading to an accuracy of 62.5824K6T. In addition, we should not
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remove either level 0 essays or essays with felagar 25 words from the corpus. If
we take adjacent agreement into account, as sosuts®n AE$ systems do, we
manage to achieve an adjacent agreement with huatars of 96%, taking all 5
levels into consideration. The adjacent agreementgvel can be found in Table 9
below. Due to a technical issue in WEKA (namelyddies not output a confusion
matrix in its Experimenter interface, which is wéeve run our super-test), our results

here are based on a normal 10-cross-fold validation

Level O Level 1 Level 2 Level 3 Level 4 Level|5

Adjacent 100% 98% 96% 94% 98% 94%

agreement

Table 9:Adjacent agreement for each level (LMT)

Naturally, the baseline for adjacent agreemertiessequence of 3 consecutive levels
that contains the highest number of essay samgieur case, that would be the
sequence of levels 1-3, with respective sampleegaliB1, 100 and 111. By adding all
these numbers together and dividing by the totatlmer of essay in the corpus (481),

we get the baseline of 71% adjacent agreement.

In Figure 16 below, we include more detailed resyer class, as well as the
confusion matrix. We note again that this resulmes from a 10-cross-fold

validation, whereas for Tables 4, 5 and 6 we haezl uhe super-test.
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=== Detailed Accuracy By Class ===

TP Rate FP Rate Precision Recall F-Measure ROC Area Class

0.586 0.119 0.596 0.586 0.591 0.851 three

0.55 0.11 0.567 0.55 0.558 0.837 two

0.737 0.009 0.778 0.737 0.757 0.965 Zero

0.817 0.083 0.787 0.817 0.801 0.94 one

0.462 0.077 0.484 0.462 0.472 0.862 four

0.727 0.045 0.678 0.727 0.702 0.951 five
Weighted Avg. 0.647 0.089 0.643 0.647 0.645 0.89

=== Confusion Matrix ===

a b c d e f <-= classified as
65 22 0 2 18 4 a = three
19 55 1 22 2 1 b = two

0 0 14 S 0 0 C = Zero

2 19 3 107 0 0 d = one
20 1 0 0 30 14 e = four

3 0 0 0 12 40 f = five

Figure 16More detailed statistics per class (LMT)

Even though LMT manages to achieve excellent adjaagreement, there might be
several reasons why our accuracy only goes up 882 These were discussed in
section 4.5.2 above.

In sum, the reasons why LMT is the best classibeour task are several. First, it is a
model that manages to drastically reduce the nurabdéeatures used, making the
model not only simpler and computationally effididout also leading to a model that
has more explanatory power and provides more itsiglto the problem being dealt
with. As Landwehr, Hall & Frank note, “includingtabutes that are not relevant will

make it harder to understand the structure of treain by looking at the final model,

because it is ‘distorted’ by the influence of thesibutes” (2005a:167). In addition,
LMT is a discriminative classifier, not a generatione. LMT builds through logistic

regressions functions a direct mapping betweenfélgures input to the logistic

regression functions and the class labels. Gemeratassifiers, on the other hand,
must calculate the posterior P (y | x) and theroshdhe class whose probability is
maximal. As we will see in our discussion of hove tresults of LMT relate to

findings in Second Language Development, many & thatures available to

language learners start showing at different levéles is in accordance with the
feature selection used by LMT, with each class aairtg in its regression function

only those variables which are relevant to thatjoeclass.
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When building an automatic essay scoring system faany other types of systems),
the gold standard, that is, the highest measursilgesof performance, is how

humans themselves perform the task. With this imdnive conducted two analyses:

a) Using a set of 25 essays from our corpus that wensistently misclassified by all
classifiers, we had a new group of trained ratats them, in order to check for the

correlation coefficient between two groups of humaters.

b) checking the correlation coefficient between #wtual scored assigned by the
human graders and that assigned by the optimailoveo our LMT classifier for all

481 essays in our corpus (1 run of 10-cross-folwlaaon experiments).

For our analysis, we have used the followed fornioitecalculation of the correlation
coefficient:

Correlation Co-efficient :
Correlation(r) =[ NZXY - EX)XY) / Sqrt((NEX? - EX)?IINZY? - (2Y)2))]
where

N = Number of values or elements

X = First Score

Y = Second Score

2XY = Sum of the product of first and Second Scores

2X = Sum of First Scores

2Y = Sum of Second Scores

X2 = Sum of square First Scores

2Y? = Sum of square Second Scores

Figure 17 Formula for calculating the correlation coefficieht

In Table 10 below, we can see the results of tlaéyaas:

H#2++ "+ + 1 3
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Table 10Correlation coefficients in 2 conditions

In both cases, we see that the correlation effiagemore than satisfactory. Our LMT
classifier performs just as well as a group of hasnaould. Thus, we can affirm that
our classifier is as good as the gold standard.
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In this section, we discuss the relevance and aimmeof our work in view of the

literature on Second Language Development and guliégpLinguistics.

932 / #& & ) "G &

Automated Essay Scoring has been making substgmbgless since its incipience,
usually dated to the 1960s and the work of Pagehim@EG system (Page, 1966).
Many other systems have been developed and otlpelatad since then, such as
Intelligent Essay Assessor, ETS1, E-rater, CriteritntelliMetric and Betsy, to
mention a few. These systems vary considerabliieir approaches and methods for
essay scoring. In 1996, Page makes a distinctitwelem automated essay scoring
systems that focus primarily on content (relatedviat is actually said) and those
focusing primarily on style (surface features, tediato how things are said) (as cited
in Valenti, Neri & Cucchiarelli, 2003). Intelligerissay Assessor, ETS1 and E-rater
are examples of the former type, while PEG and Beta Bayesian system) are

examples of the latter.

The LMT classifier and our approach is more simitathe PEG system developed by
Page. Page (1966) defines what he dals andproxes Trins are intrinsic variables
such as punctuation, fluency, grammar, vocabulange, etc. As Page explains, these
intrinsic variables cannot, however, be directlyasweed in an essay and must
therefore be approximated by means of other messwvhich he callsproxes
Fluency, for example, is measured through the pmoxnber of words” (Page, 1994).
In the features used by Dr. Verspoor and Dr. Schthiel feature TOKENS might be
said to be a prox for “fluency” and the feature PTR prox for vocabulary-
richness/range. Both the PEG system and the LM3siflar make use of multiple
regression (the former using standard regressiahtla@ latter logistic regression).

Both types of regression involve calculating theftioient weights for each feature

E & )
IA x
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and are able to select those features that are malestant for the classification at
hand.

Our feature subset, containing those 8 features#grahat correlate the most with
proficiency level encompass features that are niblymased in AES systems.
Criterion (an essay scoring and feedback-providipstem), for example, analyzes
five main types of errors, namely agreement erreesb formation errors, wrong
word use, missing punctuation and typographicairerrAll these types of errors are
present in our subset of features, in the formhefERRTOT, ERRLEX and FORM
proxes. Many systems use between 30 and even a0frds, whereas ours uses only
8 features and manages to achieve an accuracy®8%2and considerably higher in
some runs)in the super-set test and an adjacentamgcof 98%. The e-rater, for
example, extracts more than a hundred featuresi¢guB000). We must note here
that the feature ERRTOT is in fact a bundle of otekatures that are part of the initial
feature set (just as ERRTOT itself is part of tief@tures we start out with). The
fact that basically 3 of our 8 final features astated to errors shows just how
important error analysis seems to be for an autethassay scoring system and for
differentiating between proficiency levels (moretbrs later).

Two important aspects of our approach to essayreg(o far) are the following: we

only make use of a learner corpus (we have not asgdort of native corpora) and
we only analyze the essays for surface featuraso&iopurposes here, which is the
automated scoring of essays produced by L2 Dutcimger learners in terms of the
level of English proficiency present in the essays,feel no need to do any sort of
content analysis. We are interested in how muchrgobthe students have over the
grammatical, written and lexical resources of Estglnd thus content (the ways their
ideas are expressed in terms of cohesion, coheramgdeother measures) are not

relevant.

934 |/ #& & ) "G &
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We analyze here how the features we have usedrirstady and especially those

found to correlate the highest with proficiency dkvit with research findings in
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Second Language Acquisition (SLA) / Second LanguBgegelopment (SLD) and

also why LMT is the classifier the most fitting four task.

In the introduction to their 2009 article entitlé8owards an Organic Approach to
Investigating CAF in Instructed SLA: The case ofn@exity”, Norris and Ortega

write: “Fundamental to research in several domaihsecond language acquisition
(SLA) are measures that gauge the three traitowiptexity, accuracy and fluency
(CAF) in the language production of learners” (b5

Our initial set of features includes features emato all three of these measures.
Examples of complexity measures we have employed veords per utterance
(WORDS/UTT), amount of subordination (SYNCPX), ambwf present and past
tense (PRES and PAST respectively) and otherldtion to accuracy, we have used
lexical errors (ERRLEX), amount of incorrect churfReJT-), errors in the form of a
verb (FORM), errors in the use of a verb (USE),eaes of grammatical errors
(ERRGRAMS) and several others. Lastly, with regardiuency, we have looked at
the number of tokens in the essay (TOKENS) and tlecwumber of distinct tokens
(TYPES), for example.

The subset of 8 features that have shown the gteaterelation with proficiency

level in our study have all been reported in therditure on Second Language
Acquisition. We move on now to describe how eachhef 8 features selected have
been shown to correlate highly with proficiencydewVe focus especially on the
results of the analysis published in Verspoor andstbmitted), since they deal with
precisely the same dataset and features as weadeeuer, our analysis is not limited
to their study only. Verspoor and Xu (submittedydndecided to exclude level O from

their analysis, whereas we have decided to keep.the

FEATURE 1: TYPES

As Lu, Thorne & Gamson (submitted) write, “a sthafgrward measure that has been
shown to be potentially useful for measuring cHatiguage development is the
number of different words (NDW) in a text. Our TY®Heature does precisely that.
Even though our feature TYPES has been found teelede highly with proficiency
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level, it does not account for differences in tiextgth. Naturally, a longer text tends
to have more types than a shorter one. Some résgarprefer to use Type-Token-
Ratio (TTR) or root TTR (Guiraud, 1959), in whiatstead of dividing the number of
types by the number of tokens (normal TTR), theasguoot of the number of tokens
is used in order to account for differences in terggth. In our data, TTR has proved
not to correlate highly with proficiency level, wieas root TTR is the'5feature that
correlates the highest. When doing feature seleabio the whole set of features,
Guiraud’s TTR becomes part of the subset. Howeadespite increasing the accuracy
of the system by about 0.8%, it also causes a dsera the overall precision and
recall. For this reason, we have decided to sticK YPES for our task. In other

scenarios, it might be a good idea to use GuiralidR instead of TYPES.

FEATURE 2: AUT+ (chunks/formulaic sequences usadamly)

Doughty and Long (2003) describe ten methodologpraiciples based on SI°A
research that should be incorporated into any lagguteaching approach.
Encouraging chunk learning is one of these primsiplwhich shows just how

important chunks are for language proficiency.

In the study by Verspoor and Xu (submitted), thenhar of chunks present in an
essay has been shown to increase as proficieney ilesreases, between all levels.
This is only natural, given that the more exposeaeners have to the target language,
the more likely they are to internalize “naturalisding” structures as a single-unit
and the more proficient they are likely to becolfve can see in Figure 18 below how

AUT+ has been shown to develop (in their study,sgeor and Xu do not make use

of a level 0, however):
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Figure 18 Development of the AUT+ feature from level 1 td&ken from
Verspoor and Xu (submitted)

FEATURE 3: AUTTOT

Our feature AUTTOT is a combination of AUT+ (correchunks) and AUT-
(incorrect chunks). There are many different kinfishunks that make up AUTTOT,
including collocations, compound words, particlelested by specific
verbs/nouns/adjectives along with those verbs/nadiectives. As we have seen, the
more a learners uses chunks, the more proficierdeleens to be. As Sinclair and
Mauranen put it in their work “Linear Unit Grammaintegrating Speech and
Writing” (2006), "The prefabricated chunks are imgd in fluent output, which, as
many researchers from different traditions haveedolargely depends on automatic
processing of stored units”. According to Erman &drren’'s (2000) count, about

half of running text is covered by such recurramtsu”

On the other hand, using wrong chunks does notssadéy mean that the student is
not proficient. There is high variability in thefficulty and transparency of different
chunks and the use of wrong ones involves, in its¢ place, an awareness of the

existence of that chunk. Secondly, it shows a mgitiess to experiment and use newly
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learned language. Many of the chunks examined argapchunks, that is, chunks
that have an empty slot and are not fully fixede Tirong filling of that spot might be
responsible for a good percentage of AUT-.

FEATURE 4: CLAEMPTY (clauses without dependent skgiattached)

The more proficient learners become, the fewer lEmepntences they will use, giving
instead preference to longer and more complex seas$e in which they can tie their
ideas in a more coherent way. The amount of subatidin has for a long time been
used in the SLA literature to represent the syitammplexity of texts (Ishikawa,
2007, Kawauchi, 2005, Kuiken and Vedder, 2007, Miakt al., 2007). Our feature
CLAEMPTY represents exactly the amount of non-sdimation/dependent clauses
in a text. If the amount of dependent/subordindédeses has been shown to be quite
different between the levels (Figure 19 below), veould the lack of dependent

clauses/subordination.

Figure 19:Development of dependent clauses from level 1 Taken from

Verspoor and Xu (submitted)

FEATURE 5: PRES (percentage of either Simple PteseRresent Perfect)
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Our PRES feature revolves around two kinds of Medoastructions: those in the
Simple Present and those in the Present PerfestieAsan see in Figure 20below, the
more proficient a learner becomes the fewer coastms in the Simple Present they
are likely to use, from level 1 to 4. The differenmetween 4 and 5 is not significant.
Conversely, the Present Perfect shows a clearaserzom level 1 to level 3 and then
decreases from level 3 to 4, showing no real difiee between levels 4 and 5 (Figure
21). As we can see, this feature seems to corrblgte with the initial proficiency
levels and less with the highest levels. In addijtian overuse of Simple Present is
probably specific to Dutch as L1, since many sergsmwhich are rendered in English
through the Present Perfect, suchl dmve lived here for 3 yearare rendered in

Dutch in the Simple Present, adknvoon al drie jaar hier

Figure 20Development of Simple Present from level 1 to &efidrom

Verspoor and Xu (submitted)
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Figure 21Development of Present Perfect from level 1.tddken from

Verspoor and Xu (submitted)

It seems a bit unusual that two features that shovinverse development tendency
would be a strong indicator of proficiency levelemhcombined, since we are dealing
with a single numerical value here. However, conmgnrdifferent features is quite

common in machine learning and if this feature I@sn selected for our subset, then

it is because it is a good idea to combine thesefdatures.

FEATURE 6: FORM(errors in the form of the verb)

The more advanced learners are, the less likely dne to make mistakes related to
the form of a verb. It is a known fact that mistakd the type “Hego home” or “He
haveseen the movie” are much more likely to be foundhm essays of lower level

students that in those of higher level ones.

In the paper by Verspoor and Xu (submitted), wesmma clear and linear difference
in the number of verb form errors between the dkifié levels (Figure 22). This type
of linear difference is exactly the type of featuteat has a higher chance of

correlating high with the target variable (in oasse, proficiency level).
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Figure 22: Development in verb form errors frawd| 1 to 5Taken from
Verspoor and Xu (submitted)

FEATURE 7: ERRLEX(lexical errors, summed over all possible subtypes

With an increase in proficiency in the L2 comeseardase of the influence of one’s
L1 on their L2. Therefore, the more advanced sttgdshow less L1 (Dutch, in our
case) interference on their English. Our ERRLEXU&ais in fact the sum of various
types of lexical errors, many of which are in faansfer errors (due to L1 influence).
As we can see in the graph below (Figure 23), ERRBIES0 shows a clear decrease
from level 1 to level 5. The difference betweenelevl and 2, and levels 4 and 5 is

ever clearer.
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Figure 23: Development in lexical errors from level 1 tolaken from

Verspoor and Xu (submitted)

FEATURE 8: ERRTOT(total amount of errors)

ERRTOT is a bundle of error types, including lekicggammatical, punctuation and
mechanical. As mentioned in Feature 8 above, the mdvanced a student is, the less
likely they are to make mistakes, especially moasid ones. Therefore, it is only
natural that a feature such as ERRTOT correlatésgsy with proficiency level. As
speakers of our languages, we can very quickly famninformed idea of someone’s
proficiency level just based on a kind of mistakeyt make (and how often). We can
see in Figure 24 below how the development of EQRTrom levels 1 to 5 confirms

our statement:
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Figure 24:Development in total amount of errors from levéd B. Taken from

Verspoor and Xu (submitted)

We proceed now to exploring how the values for ezfdine 8 features in our feature

subset might be automatically extracted from aayess
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In this section, we discuss possible ways of autmaldy extracting the values for our
8 features. As we have seen, LMT performs quite wekerms of classification.
However, to have a truly automated essay scorirsgesy, we need to be able to
automatically extract the values for each of ode&ures, given a raw essay. These
values will subsequently be fed to LMT, which wililen output the proficiency level
of a specific student. We discuss the automatich@® features in the same order in

which they are presented in the previous section.

FEATURE 1: TYPES

Out of our 8 features, this is the easiest oneutoraate. A few lines of code are
enough to get the value of TYPES for a given es¥é&y.simply have to count the

amount of unique tokens. Some pre-processing isiinexty however, such as
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changing proper names and numerals into a singheMB or NUMERAL” token. In
the former case, we would need to use a subsys$iginistable to detect named- entity
expressions. In both cases, the use of regulaessgions to define the patterns we are
after might suffice, since these are essays writtestudents in either the'br 3¢
grade and no unusual named-entities or decimal etsnifior example, are likely to

be encountered.

FEATURE 2: AUT+ (chunks/formulaic sequences usademly)

This is arguably one of the most difficult featutesautomate, not only in our subset,
but out of the 81 features we started with. Knowingat constitutes a native-like
construction requires an immense amount of trairdiaga and exposure to the
language, something we humans have probably hadguaantity much higher than

any given corpus we might decide to use in an aatedhsystem. Our feature AUT+
is actually made up of several types of “nativergbung” structures. Following the

examples in Verspoor and Xu (submitted), we showesexample of chunks:

a) structuresbetterand_ better, it is easyto do, find it_niceetc.

b) complementsdecided to, be able to, | don’'t know what/who/whete.
c) compoundssunbathing, deep blue, two-week holiday, etc.

d) particlesdepend on, go on holiday, make up a story, a gajuptc.

e) collocationsthe sun goes down, take a dive, hurt badly, etc.

f) fixed phrasedlots of fun, have a wonderful time, what a pitg, et

g) discoursewhy don’t we, in other words, guess what, etc

We shortly discuss here two main methods that wghtmemploy in order to
automatically detect chunks in an ess& (chi-squared)and point-wise mutual
information. There are other methods that might be used as swalh adikelihood
interval, likelihood ratio testCohran’s methodnd others. We have decided however
to restrict our exploratory discussion to the twor@mentioned methods. For both
methods we need to have a very large corpus ofen&inglish use at our disposal, so
as to get our frequency counts (and thus the piliflyabf the constructions). Using
only a learner-corpus will not suffice in the cadedetecting collocations. In fact, a
learner corpus is actually undesirable. We notedbtomatically detecting chunks is
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a quite difficult and complex endeavor and the méghbelow are more suitable to
detect some kinds of chunks than others. Some catitms, particles and fixed
phrases for example, can be more easily identliiedhe methods we will discuss,
whereas those chunks that contain partially fidetsge.g,take the_buscan trick a

statistical system much more easily.

a)P® (chi-squared)

A chi-squared test works in the following way: iésames that & number of
variables (words in our case) are independent faoh other (this is called the null-
hypothesis) and by comparing the observed frequericgo-occurrence with the
expected frequency of co-occurrence of these Vasabt allows us to conclude
whether their observed frequency of co-occurrescstatistically significant. If the
answer is positive, we are then forced to rejeetrttll-hypothesis and say that there
is a correlation between those variables. The nbexperimental design of ehi-
squared test uses two variables, but it is possible (desptibstantially more
complicated) to increase the number of variablesngat to our chi-squared table. In
a 2x2 table, it is important that the number ofentpd co-occurrences for each cell
be at least 5 in order for the chi-squared testdk. We can see in Table 11 below a

chi-squared table for calculating whetlake actionrmight be a chunk:

ACTION - ACTION
TAKE A B
- TAKE C D

Table 11:Chi-squared table for calculating whether “take iact’ is a chunk

For each cell, we must calculate both the expeatetithe observed number of co-
occurrences. Cell A, for example, represents thwession “take action”, whereas
cell B represents any expression that begins wighwiordtake and is then followed

by a word different fromaction Since many of the words and phrases we might want

to check for may not be very common, we need a kage corpus (the web itself is
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the most desirable corpus) in order to get reliatdents. We will not go into the
details of the calculation chi-squared in here, et note that in the end, after
calculating the necessary numbers, we end up wdingle numerical value for that
expression we are checking. This final number rbesthecked against a predefined
number in a chi-squared table for the null-hypothds$ the number output from our
table is higher than the number referring to th# hypothesis (different so-called
degrees of freedom are possible), then we can saljave a collocation, since our
variables co-occur more often than change wouldtgta

This method might work quite well for idioms, sintteere is very little variation in
idioms, given that they are a fixed and orderedalblaf words. Example of idioms are
“like a bull in a china shop”, “better later tharvwer”, etc. However, for other kinds
of chunks, like “take action”, chi-squared does wotk very well, since in the B cell
above, we would have quite high numbers as welergithat other chunks starting
with takesuch as “take the bus”, “take precautions”, “takee” and “take part” are
also common. Another issue is that some chunks tnaillpw a flexible word order,
such as “pick the boy up” and “pick up the boy™n& chi-squared in our case works

with a rigid word order, we might miss many couiaiscertain chunks.

As we can see, even though chi-squared can be ugefal in some cases, it is by no
means an exhaustive method for automatically dagpachunks. Point-wise mutual
information (discussed below) tends to encounter shme sorts of issues, which
might lead us to have to experiment with both stiatl and rule-based methods for
extracting chunks.

b) point-wise mutual information

Point-wise mutual information quantifies the di#face between the probability of the
co-occurrence of Z variables given a joint disttiba and the probability of their co-
occurrence given their individual distributions.eTfformula for the point-wise mutual

information between 2 variables can be found below:
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The expression “take action” constitutes two vddapthe first being the woridke
and the second the woattion If we are analyzing, however, if a 4-word exgies
might be a chunk, however, the formula can be yaslapted (much more simply
than chi-squared) to include more variables. Indage of “take action”, we would

calculate the PMI between these two words in theviing way:

PMI (take, action) = log C (take, action) / N

C (take) / N * C (action) / N

In the formula abov€ stands for the number of times we have seen afgpecrd
(count) andN stands for the number of tokens (or words) presetiite corpus.

The problem with PMI is similar to the one faceddby-squared, namely the fact that
many chunks are either partial or accept a flexitier. In the former case, we would
get a high number in the denominator, since “taketlld appear many times in the
corpus followed by something else other than “actidhis will lead to a decrease in
the probability that “take action” is a chunk. Nally, we can experiment with
different probability thresholds for affirming thatcertain expressions is a chunk, but

this is not likely to make the system much better.

Given that neither chi-squared nor PMI is enoughutomatically detect all types of
chunks, a mixture of rule-based and statisticalhoas might be desirable, with the
former taking preference when available. For chusish as “it is_easyo” and
“better and better”, a template for these consiwast combined with part-of-speech
tagging of both the native corpus and of the essaygiestion will probably lead to
the identification of many chunks which would net identified by the two statistical
methods discussed above. Examples of templatesdwmeiAdjectiveg + AND +
Adjective, IT IS + ADJECTIVE + TGand others.

In sum, the task of automatically detecting chuimkan essay is extremely complex

and only a process of trial and error, in which ex@eriment with many different
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techniques such as the one cited above, mightusawards a system capable of

accurately extracting the types of chunks used énspoor and Xu (submitted).

FEATURE 3: AUTTOT

As previously mentioned, AUTTOT is a combinationbaith correctly used chunks
(AUT+) and incorrectly used ones (AUT-). AUT- i@ complex to be automated.
However, the same calculations we have to do femntilying AUT+ might also lead
us to extracting AUT-. One possible way to go akibettask would be to check for
each structure (2 words or more) whether it quedifas a chunks or not (using chi-
squared or PMI, for example). In the case that ot a chunk, we would check for
all the words in our structure, one at a timeh#re are other words that could fit in
their slot and thus turn the whole structure intthank (calculated through the means
above). An example would be the structure “likeog th a china shop”. As we know,
this is not a correct chunk, given that the cor@uink would be “like a bull in a
china shop”. We would start by calculating the @bty that any other X word seen
in our corpus in the position dke (and therefore before “a dog in a china shop”)
might gives us a chunk. The sentence “as a dogchirea shop”, for example, would
not qualify as a chunk. However, when we got to wuwed dog and replaced it by
“bull”, we would get from of our statistics thatettsentence “like a bull in a china
shop” does indeed qualify for a chunk. In this was, can assert that “as a dog in a
china shop” is an incorrectly used chunk (AUT-nc& there is a slightly different
version of it that does qualify as a chunk. Thisuldoapply in the same way for
incorrect chunks such as “it depends in you” ortlfink it nice”, for example.
However, it might judge some perfectly fine constiotns such as “better and
stronger” to be an incorrectly used chunk, sincettdr and better” might classify as
being a chunk. Just as with AUT+, using templateghinbe a good idea, since
something that “almost” fits the template mightjbdged to be an incorrect chunk.
Other incorrect chunks, such as “pick up him” arendifficult to detect. Allowing a
flexible word order seems to cause problems fantiieng both correct and incorrect

chunks.
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FEATURE 4: CLAEMPTY (clauses without dependent skgiattached)

Automating our CLAEMPTY? feature is somewhat simpler. Dependent clausea are
group of words that do not express a complete thipudgespite containing a subject
and a verb. Quite often, dependent clauses areegedcby what might be called
“dependent marker words”. These are words suctvhake, whether unless when
wheneveras as if, becausebefore even thoughin order tq since though etc. If we
find one of these words in an essay, there is @ gbance that the clause that follows
is a dependent clause. The main issue here isifiegtthe boundaries of the
dependent and independent clauses (where eactegmsand ends). Such a task can
be achieved by means of applying a parser to thiesees. Once the parser identifies
a noun phrase (NP) followed by a verb phrase (V@know we have a clause. If it

follows one of our marker words, then this clauseild likely be a dependent clause.

In fact, there are already systems available thatable to identify the number of
clauses and dependent clauses in a sentence. €meysiem is the one developed by
Xiaofei Lu (2010), named L2 syntactic Complexity alyger. The number of
sentences (S), the number of clauses per sent€gg dnd the number of dependent
clauses per clause (DC/C) in an English essayhage of the nine complexity indices
that the system is able to identify, by its useh&f Stanford parser and a parse-tree

guerier. With these three numbers, we are ablaltulate our CLAEMPTY feature.

FEATURE 5: PRES (percentage of either Simple PteseRresent Perfect)

A parser is able to identify syntactic phrases sashoun phrases (NPs), verb phrases
(VPs) and others. Many grammar formalisms, suchiRSG and CFG, are able to
identify the head of the phrase as well. Once wee hdentified the head of the VP,
we can then analyze it for tense. The present tengaglish (both in the Simple and
Perfect aspects) is quite easy to analyze, sireetiy variation is found in the'®3
person singular (such as’Time boy leaves home at 7amherefore, with the help of a
parser and a morphemizer (which is capable of iyamy specific morphemes in
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words), we are able to get the counts for the feadRRES tense in our essays. Finite-

state techniques can also be employed but mightenaecessary.

FEATURE 6: FORM(errors in the form of the verb)

Our feature FORM stands for errors in the form @keb, such as in the senteride

go to schoolThe correct form igjoes since the verb must agree with tH& Berson
singular subject. Another example of a FORM errould beHe was shoot in the
arm. Grammar formalisms such as HPS@re able to parse complete sentences and,
given that it is a unification-based formalism (graatical features have to match
each other incrementally), it identifies problemghwagreement, participle forms
such as in the passive example above and othes.typéormalism such as HPSG

would allow us to get our counts for the FORM featu

FEATURE 7: ERRLEX(lexical errors, summed over all possible subtypes

The feature ERRLEX is in fact a sum of 7 kinds ekital errors (cf. Index),
including errors caused by L1-Dutch transfer, sash“a long boy’ Tetreault and
Charodow (2009), in an article entitl&kamining the Use of Region Web Counts for
ESL Error Detectiordiscuss a new approach to identifying errors iglish and an
L2/foreign language. By making use of web countglisas the number of hits a
search engine like Google provides), the basic isiéa compare the difference in the
frequency of specific constructions (and their &afts) in the web counts of a specific
non-English speaking region (where English is nétst language) against a region
where English is a first language (such as the W&E#e UK, for example). In the
case of our ERRLEX feature, it might be a good ittease the Netherlands itself as
the only region or one of the non-English speakegons, since many of the lexical
errors in our case are due to transfer from Dukcreat discrepancy in the number
of counts (naturally, different thresholds haveb&oexperimented with) for the non-
English speaking regions and the English speakégipns indicates an error. This
method circumvents the very common issue of thevaitability of a very large
learner corpus (with tagged errors for example) agb avoids the problems
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associated with training a model solely on welkied texts (native essays, for
example). However, a combination of this approad & model trained on tagged

learner corpora might prove to be quite useful @mdplementary.

FEATURE 8: ERRTOT(total amount of errors)

Our last feature in the subset, ERRTOT, is a bigdbeiof other features, all related to
errors. They represent lexical, mechanical, grammspelling, mechanics,
punctuation, word order and others. The majorityhelse errors can be identified by
the same methods mentioned above, namely, TetraadltChodorow’s system of
using web counts, complemented with a model traioeda learner corpus from
Dutch students writing in English. Many of the esr@an already be identified by
spelling and grammar checkers such as those prieskitrosoft Word, for example.
Punctuation errors, on the other hand, are likelybe more difficult to be
automatically detected, since many parsing modelsnot take punctuation into
account. Another problem with detecting punctuapooblems based on web counts
is that many of the “hits” provided by Google, fexample, come from pages in
which people do not pay much attention to punatuativhen writing. Therefore,
punctuation error detection might be the one typermr that needs to be trained on
well-formed corpora. Another possibility for punation error detection would be to
make use of a Hidden Markov Model of a higher ardeich as one implemented
through the Viterbi algorithm, trained on a largepus such as newspaper articles,
books, etc. Even here, however, we run into thélpro that many of the structures
and n-grams used by the Dutch students might net baen seen in the training data,

in which case some sort of back-off model wouldéhtorbe used.

As we have seen in this section, some of the &featin the subset lend themselves
much more easily to automation than others. AUTHJTAOT, ERRLEX and
ERRTOT in particular, are much harder to automBteproviding LMT with access
to only the 4 features that are the easiest toempht (TYPES, CLAEMPY, PRES
and FORM), we manage to keep an accuracy of 55I5#%.is lower than the 62.58%
we manage to achieve when all 8 features are bsgedhows that once these 4 easier
features are implemented in a system, LMT stilictions well for our purposes, since

the great majority of the misclassifications aik atljacent ones.
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We have shown in the scope of this thesis that madkarning techniques are quite
fitting for the identification of those featuresathcorrelate the most with proficiency
level. Once we manage to automate the 8 featurats dbrrelate the most with
proficiency level and extract their values, Logistlodel Tree will prove to be a quite
fitting classifier for the task of automatic essagoring (AES). The LMT
schemel/classifier, in particular, not only shows bHest results in terms of accuracy
and adjacent classifications but also approaches cthssification task from a
perspective that is more in tune with findingshe Applied Linguistics literature. As
Verspoor and Xu (submitted) show, different feasudevelop at a different pace
through the levels and not always present a litedravior. By selecting for each
class (proficiency level) only those features thwa important for that specific class
and calculating the optimal classification coe#iti for those features, LMT achieves
the best accuracy possible. Moreover, by compaitiegcorrelation coefficients of
two groups of humans and that of a group of humensus our LMT system, we
conclude that LMT’s classification meets the sdezhfjold standard. In other words,

LMT performs just as well for our task and a gradiprained human raters would.

We are aware of the fact that we deal here witly palt of the proficiency spectrum,
since our highest level (level 5) is a high B1 leue the Common European
Framework. In addition, we have only used essay#tenrby Dutch students and
some of our features might be tuned to phenomemaatyof Dutch L1 interference

on English, which might lead LMT to perform not sell on essays written by
students whose L1 is not Dutch. With regard to $pectrum of our proficiency

levels, we have every reason to believe that ostesy would work just as well if

higher proficiency levels were to be included. Rdgsy the students’ L1, only a
collection of holistically scored new essays by akmes of different L1s would

provide us with the answer as to whether our cturckssifier would perform well on

those essays. In case the accuracy is much loweweawould need to do is to

annotate our 8 features in these new essays amdhratdifferent classifier. Another
possibility would be to merge both classifiers, tre for Dutch and the one for the
new L1, so as to create a classifier that wouldlleamore than just one L1.
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A logical future step in our work is to developystem that automatically extracts the
values for our subset of 8 features and autométiteds those to our LMT classifier
in order to have a truly automated essay scorirsjeay. Some of the features are
certainly easier to be implemented than othersyeabave described. In future work,

we intend to develop such a system.
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